ISSN   1004-0595

CN  62-1224/O4

高级检索
刘逸众, 肖鹏, 李专. Cu改性C/C-SiC摩擦材料组织结构及摩擦磨损性能研究[J]. 摩擦学学报, 2012, 32(4): 352-359.
引用本文: 刘逸众, 肖鹏, 李专. Cu改性C/C-SiC摩擦材料组织结构及摩擦磨损性能研究[J]. 摩擦学学报, 2012, 32(4): 352-359.
LIU Yi-zhong, XIAO Peng, LI Zhuan. Microstructure and Tribological Properties of Cu Modified C/C-SiC Composites[J]. TRIBOLOGY, 2012, 32(4): 352-359.
Citation: LIU Yi-zhong, XIAO Peng, LI Zhuan. Microstructure and Tribological Properties of Cu Modified C/C-SiC Composites[J]. TRIBOLOGY, 2012, 32(4): 352-359.

Cu改性C/C-SiC摩擦材料组织结构及摩擦磨损性能研究

Microstructure and Tribological Properties of Cu Modified C/C-SiC Composites

  • 摘要: 以全网胎针刺整体毡为预制体,采用Cu粉与Si粉共同熔渗的工艺制备了Cu改性C/C-SiC摩擦材料,并且在MM-1000型惯性摩擦试验机上分别进行了不同速度下的制动试验.研究了Cu改性C/C-SiC摩擦材料的组织结构及摩擦磨损性能,研究结果表明:当初始转速为1 500 r/min时,Cu改性C/C-SiC摩擦材料摩擦系数为0.306,自身与对偶件的线性磨损率分别为0.036 μm/(side·cycle),0.048 μm/(side·cycle);当初始转速增加到6 500 r/min时,材料的摩擦系数减小到0.24,其自身与对偶件的线磨损率分别增加到1.87 μm/(side·cycle),1.68 μm/(side·cycle),其值均低于典型C/C-SiC摩擦材料,表明Cu改性C/C-SiC摩擦材料耐磨减摩效果优异,且在低速工况下更为显著.转速为1 500 r/min时磨粒磨损起主导作用;转速为3 000~4 500 r/min时,磨粒磨损以及黏着磨损共同主导着摩擦行为;转速为4 500~6 500 r/min制动时主要表现为氧化磨损与剥层磨损.

     

    Abstract: Cu modified C/C-SiC composites are fabricated by reaction melt infiltration with needle-punched carbon felt as preforms. The braking tests are carried out on an MM-1000 tester to investigate tribological properties of the composites. The results show that the Cu modified C/C-SiC composites have better wear-resistance and antifriction effects compared with that of C/C-SiC composites, especially at low speed. Under 1500r/min braking speed, the friction coefficient, linear wear rate of material and couple parts are 0.306, 0.036 and 0.048 μm/(side·cycle), respectively. With the braking speed increases from 1 500~6 500 r/min, the friction coefficient decreases to 0.24, while the linear wear rate of the composites and couple parts increases to 1.87 and 1.68 μm/(side·cycle), respectively. At 1 500 r/min braking speed, the main wear mechanism is abrasion. At braking speeds of 3 000~4 500 r/min, the wear mechanism is abrasive wear and adhesive wear. At speeds of 4 500~6 500 r/min, delamination wear and oxidation wear are the main wear mechanism.

     

/

返回文章
返回