ISSN   1004-0595

CN  62-1095/O4

高级检索
段春俭, 崔宇, 王超, 陶立明, 王齐华, 谢海, 王廷梅. 高温条件下热固性聚酰亚胺摩擦学性能研究[J]. 摩擦学学报, 2017, 37(6): 717-724. DOI: 10.16078/j.tribology.2017.06.002
引用本文: 段春俭, 崔宇, 王超, 陶立明, 王齐华, 谢海, 王廷梅. 高温条件下热固性聚酰亚胺摩擦学性能研究[J]. 摩擦学学报, 2017, 37(6): 717-724. DOI: 10.16078/j.tribology.2017.06.002
DUAN Chunjian, Cui Yu, WANG Chao, TAO Liming, WANG Qihua, Xie Hai, WANG Tingmei. High Temperature Tribological Properties of Thermosetting Polyimide[J]. TRIBOLOGY, 2017, 37(6): 717-724. DOI: 10.16078/j.tribology.2017.06.002
Citation: DUAN Chunjian, Cui Yu, WANG Chao, TAO Liming, WANG Qihua, Xie Hai, WANG Tingmei. High Temperature Tribological Properties of Thermosetting Polyimide[J]. TRIBOLOGY, 2017, 37(6): 717-724. DOI: 10.16078/j.tribology.2017.06.002

高温条件下热固性聚酰亚胺摩擦学性能研究

High Temperature Tribological Properties of Thermosetting Polyimide

  • 摘要: 以3,3,4’,4’-联苯四甲酸二酐(s-BPDA)、4,4’-二氨基二苯醚(4,4’-ODA)、3,4’-二氨基二苯醚(3,4’-ODA)、4-苯乙炔苯酐(4-PEPA)为前驱体,设计并制备了热固性聚酰亚胺. 采用球盘式高温摩擦磨损试验机进行室温(25 ℃)、100、200、250、300和350 ℃条件下的滑动摩擦磨损试验. 通过表征不同温度磨损后的材料和对偶表面形貌,研究了其高温条件下的摩擦行为和磨损机制. 结果表明:随着环境温度的升高,热固性聚酰亚胺的磨损率呈现先升高,后降低再升高的趋势;而摩擦系数却一直降低. 这种趋势归结于聚合物接触表面机械性能的改变. 不同温度条件下的磨损机理也是不同的,25和100 ℃条件下的磨损主要为疲劳磨损和磨粒磨损;随着环境温度升高到200 ℃时,磨损表面部分链段易于剪切,形成一层均匀的转移膜而降低了磨粒磨损;当温度升高至250、300以及350 ℃时,磨损表面的分子链段运动更加剧烈,在试验载荷持续挤压下,分子链间作用力破坏而剥落,磨损率急剧升高,表现为黏着磨损,并且环境温度越高,磨损率越大.

     

    Abstract: Thermosetting polyimide oligomers with different diamines (isomers) was synthesized with 3,3’, 4,4’-biphenyltetracarboxylic dianhydride (s-BPDA), 4,4’-diaminodiphenyl ether (4,4’-ODA), 3,4’-diaminodiphenyl ether (3,4’-ODA) and 4-phenylethynylphthalide (4-PEPA). Furthermore, dry sliding tests were performed at 25 ℃, 100 ℃, 200 ℃, 250 ℃, 300 ℃ and 350 ℃ on a ball-on-disk wear tester. Mechanisms of friction and wear were studied in detail by scanning electron microscope and energy dispersive X-ray spectroscopy. At elevated temperature, experimental results demonstrated that the wear rate increased first, then decreased and finally increased. However, average coefficient of friction showed a tendency to plummet with temperature range from 25 ℃ to 350 ℃. This trend was attributed to changes in the mechanical properties of the polymer surface. The wear mechanisms at elevated temperatures were different. At 25 and 100 ℃, fatigue wear and abrasive wear prevailed. From 100 ℃ to 200 ℃, a dense of transfer film generated and the thickness increased due to adequate shearing motion of molecular chain. Hence, mild abrasive wear played a major role. Above 250 ℃, wear rate rapidly increased with damage of interaction between the molecular chain and polyimide was peeled on worn surface under the lasted load, adhesive wear was dominant. As a general guideline, higher ambient temperature rendered a greater wear rate.

     

/

返回文章
返回